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Abstract—The growing challenge of increasing traffic volumes 

presents a real challenge for road safety, emergency response and 

overall transport efficiency. Intelligent transportation systems 

play a fundamental role in solving these challenges, through 

accurate traffic prediction. In this study, we propose a hybrid 

model that combines the Long-Term Memory Algorithm (LSTM) 

and Particle Swarm Optimization (PSO) to predict traffic flow 

more accurately at intersections. Our approach takes advantage 

of the strength of PSO, a robust optimization technique inspired 

by swarm intelligence, to optimize the hyperparameters of the 

LSTM algorithm. Through in-depth benchmarking, we evaluate 

the performance of our hybrid LSTM-PSO model against other 

existing models. By evaluating measures such as root mean square 

error and mean absolute error, we demonstrate the superior 

efficiency of the proposed hybrid model. Our results highlight the 

effectiveness of our approach in outperforming alternative 

models, offering a promising solution for intelligent transportation 

systems to accurately predict traffic flow at intersections and 
improve overall traffic management efficiency. 
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I. INTRODUCTION 

Transportation networks play an essential role in reinforcing 
economic and societal activities by facilitating the mobility of 
people, goods, and services. The reliability and efficiency of 
these transport systems are of great importance in fostering 
economic growth, as they establish the necessary links between 
producers, suppliers, and consumers, ensuring the continuous 
flow of goods and services. Furthermore, these transportation 
systems act as catalysts for access to employment, education, 
and healthcare facilities, meeting the indispensable needs of 
communities [1]. 

The integration of Intelligent Transport Systems (ITS) with 
Artificial Intelligence (AI) presents an opportunity to anticipate 
the movement of vehicles, enabling the implementation of 
efficient traffic management strategies that aid authorities in 
optimizing resource allocation and mitigating congestion at 
intersections. Through the utilization of machine learning 
algorithms trained on historical traffic data, ITS can accurately 
forecast forthcoming traffic flow patterns. This precise traffic 
flow prediction empowers ITS to dynamically adjust crucial 
factors such as traffic light timings, lane assignments, and speed 
limits, among others, with the aim of optimizing traffic flow and 
averting congestion at intersections. Consequently, the fusion of 
ITS and AI holds the potential to alleviate congestion, enhance 
travel durations, and augment overall traffic management [2]. 

The field of traffic prediction has experienced significant 
advancements in recent years, thanks to the emergence of AI 
techniques [3]. Machine learning, deep learning, and 
probabilistic reasoning stand out as three prominent techniques 
employed in traffic prediction. ML algorithms leverage 
historical traffic data to analyze patterns and make precise 
predictions regarding future traffic conditions [4]. DL models, 
on the other hand, utilize multi-layered neural networks to 
extract intricate features from raw traffic data, leading to 
improved prediction accuracy [5]. Additionally, probabilistic 
reasoning techniques rely on statistical models and probability 
theory to estimate traffic patterns by combining historical data 
with current contextual information [6]. Congestion estimation 
involves the process of predicting traffic flow parameters to 
assess the level of congestion on road networks. This estimation 
is accomplished by considering several parameters, including 
traffic speed [7], density, speed [8], and congestion index [9]. 
These parameters provide invaluable insights into the flow and 
congestion levels within road networks, thereby enabling 
effective prediction and proactive management of traffic 
conditions. 

The principal aim of this contribution is to develop a 
prognostic system by integrating the Long Short-Term Memory 
(LSTM) algorithm with particle swarm optimization (PSO) to 
achieve precise predictions of traffic flow at intersections and 
alleviate traffic congestion. This work builds upon our previous 
research [10]. The PSO optimization technique is employed to 
refine the hyperparameters associated with training the LSTM 
model. This hybrid model leverages the memory capabilities of 
LSTM to capture temporal dependencies in traffic data while 
optimizing its performance with PSO. To assess the efficacy of 
our hybrid model, we utilized a publicly available dataset [11] 
containing data gathered from four distinct intersections 
collected over a time frame spanning from November 2015 to 
June 2017. Following data transformation and pre-processing, 
we conducted a comparative analysis between our hybrid model 
and existing models, selecting the most superior performing 
model based on RMSE and MAE metrics. 

The structure of the paper is organized as follows: Section II 
provides a brief review of the relevant literature. In Section III, 
we describe our data and methods. Section IV is dedicated to 
presenting the proposed solution, followed by a performance 
evaluation in Section V. Section VI covers the experimental and 
benchmarking results. Finally, Section VII concludes the paper 
and discusses future perspectives. 
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II. RELATED WORK 

Traffic flow prediction is essential for effective traffic 
management. Techniques range from traditional statistical 
methods to advanced DL and optimization algorithms, which 
have been successfully applied for accurate predictions, aiding 
in better traffic management and decision-making. 

Navarro-Espinoza et al. [12] conducted a study addressing 
urban traffic congestion, where ML and DL techniques were 
employed to predict traffic flow at intersections. The proposed 
models aimed to facilitate adaptive traffic control systems by 
remotely adjusting traffic lights or timing based on predicted 
flow patterns. Evaluation of various ML and DL algorithms 
revealed that the Multilayer Perceptron Neural Network (MLP-
NN) emerged as the top performer, achieving an R-Squared and 
EV score of 0.93. This indicated its suitability for 
implementation in smart traffic light controllers. Despite 
achieving impressive results with Multilayer Perceptron Neural 
Network (MLP-NN), it's important to note that MLP-NN may 
encounter limitations in handling high-dimensional and noisy 
traffic data, potentially leading to overfitting. 

Boukerche et al. [13] proposed a study focusing on ITS, 
which garnered attention in recent years due to promising 
applications like Vehicular Cloud and intelligent traffic controls. 
Achieving these goals relied on accurate traffic flow prediction 
systems, with ML. The study provided a comprehensive review 
of ML models, categorizing them based on theory and analyzing 
their suitability for different prediction tasks. Additionally, 
challenges and auxiliary techniques in traffic prediction were 
discussed. While ML emerged as a prominent method, it's 
crucial to acknowledge the limitations of ML models, including 
their sensitivity to data distributions and potential challenges in 
adapting to dynamic traffic conditions. 

N. Katambire et al. [14] investigated the impact of rising 
travel demand and vehicle ownership on traffic efficiency, 
particularly at intersections. They explored time series 
forecasting methods like LSTM and ARIMA models to predict 
future traffic rates, favoring LSTM for monthly traffic flow 
prediction. Additionally, the study proposed an adaptive traffic 
flow prediction system using vehicle-to-infrastructure 
communication and IoT technologies to enhance junction 
control and service quality in real-time. Despite LSTM's 
effectiveness in capturing temporal dependencies, it may 
encounter challenges in adapting to abrupt changes in traffic 
patterns, particularly at intersections. 

Jang et al. [15] explored solutions for traffic congestion in 
smart cities by investigating traffic flow prediction methods 
such as LSTM and GRU models. The study utilized various data 
sources including regular traffic data, predictable event data, and 
meteorological data to enhance prediction accuracy and 
effectively forecast traffic congestion levels. In this study, three 
simulation architectures were tested for traffic flow prediction. 
Simulation 1 with basic architectures (Vanilla) showed 
limitations in accuracy. Simulation 2 introduced stacked 
architectures, improving predictions but with longer training 
times. Simulation 3 used encoder-decoder architectures, 
showing comparable results to stacked models but with shorter 
training times. Despite LSTM generally outperforming GRU, 
neither achieved exceptional performance due to potential data 

inadequacies. It's essential to recognize that both models may 
face limitations in handling potential data inadequacies, which 
could impact prediction accuracy, especially in dynamic urban 
environments. 

Giraka et al. conducted [16] research on predicting turning 
volumes at urban intersections using Seasonal Autoregressive 
Integrated Moving Average (SARIMA) models. this study 
specifically addresses unsignalized three-leg intersections. By 
using data from the preceding three days, the SARIMA model 
effectively forecasts the next day's turning volumes, achieving a 
Mean Absolute Percentage Error (MAPE) of less than 10%.  
While SARIMA effectively forecasts turning volumes, it may 
encounter challenges in adapting to unexpected traffic events or 
anomalies, potentially affecting prediction accuracy in real-
world scenarios. 

In their study [17], the authors proposed a novel approach 
that combined Support Vector Regression (SVR) with PSO to 
enhance the accuracy of vehicle traffic prediction. The proposed 
method was compared with other techniques like multiple linear 
regressions and neural networks. PSO was employed to 
optimize the input parameters of SVR, including penalty C, 
radius, and kernel function. The evaluation metric used was 
RMSE, which served as the fitness function for PSO. While this 
approach demonstrates improvements over other models, it's 
important to acknowledge the computational complexity 
associated with SVR and potential challenges in scalability 
when applied to large-scale traffic datasets. 

Moumen et al. presented their study [18] based on a DL 
approach that treats traffic flow from four intersections as a 
distributed system using Gated Recurrent Units (GRUs) in the 
same dataset that we used for our study. The performance of 
their model was evaluated using RMSE metrics, achieving 
RMSE values of 0.245881 at intersection 1, 0.558597 at 
intersection 2, 0.606137 at intersection 3, and 1.024198 at 
intersection 4. Despite achieving competitive results, it's crucial 
to recognize GRU's limitations in handling irregular traffic 
events and variations, which could impact prediction accuracy 
in dynamic urban environments. 

Deekshethaet al. [19] conducted a comprehensive study on 
traffic prediction employing advanced ML techniques using the 
same dataset that we employed in for study. Leveraging the 
capabilities of Sklearn, Keras, and TensorFlow libraries, they 
constructed a sophisticated regression model to forecast traffic 
flow, underscoring the importance of considering the limitations 
of individual algorithms in adapting to diverse traffic conditions 
and data distributions. 

Yin et al. [2] used the same dataset that we employed for our 
study but focused specifically on the traffic data collected from 
the first three intersections between November 2015 and 
January 2016. By utilizing a stacking ensemble learning model, 
they predicted traffic flow for multiple phases. The resulting 
MAE values for phases 1, 2, and 3 were 2.730, 3.708, and 4.347, 
respectively. However, it's essential to acknowledge the 
potential complexity and computational overhead associated 
with ensemble methods, particularly in real-time prediction 
scenarios. 
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According to our knowledge, we find that despite 
competitive results, the majority of ML and DL techniques 
mentioned in this section do not address all challenges related to 
traffic and intersection congestion. Their limitations concern the 
management of irregular traffic events and variations, the 
sensitivity to data distributions which could impact the accuracy 
of forecasts in dynamic urban environments, the management of 
large and noisy traffic data, potentially leading to overfitting. 
Additionally, we note that it is essential to recognize the 
potential complexity and computational burden associated with 
ensemble methods, particularly in real-time forecasting 
scenarios. In general, computational complexity negatively 
impacts AI models to be applied to large-scale traffic datasets. 
Additionally, and despite the effectiveness of AI models in 
capturing temporal dependencies, they may have difficulty 
adapting to abrupt changes in traffic patterns, particularly at 
intersections. This motivates us to propose our approach having 
the advantage of meeting these challenges such as the 
management of irregular traffic events and variations, sensitivity 
to data distributions, real-time forecasting scenarios, reduced 
computational complexity, management of large-scale traffic 
datasets. Our approach is based on a hybrid LSTM-PSO model 
which is validated using empirical traffic data. 

Building on the strengths of LSTM which has demonstrated 
its effectiveness in modeling temporal dependencies in traffic 
data, we further optimize the model hyperparameters using PSO 
to improve its adaptability to dynamic traffic conditions and 
address the limitations identified in previous approaches. PSO 
plays a crucial role in guiding the LSTM model to avoid local 
optima during the parameter optimization process, ensuring that 
the model converges to more globally optimal solutions.  By 
leveraging LSTM with PSO optimization, our model offers a 
robust solution for accurate and reliable traffic flow prediction, 
capable of overcoming challenges such as data inadequacies and 
fluctuations in traffic patterns. Through empirical evaluation 
and comparative analysis, we demonstrate the efficacy of our 
approach in improving prediction accuracy and facilitating 
informed decision-making in traffic management scenarios. 
respectively. Sections III and IV highlight our methodology 
used in more details. 

III. DATA AND METHODS 

A. Data Description 

In this research, we used a precious dataset, which serves as 
a valuable resource for researchers and practitioners alike [2]. 

The dataset used in our work comprises a comprehensive 
collection of 48120 vehicle records, meticulously collected from 
four intersections. This rich dataset includes four key attributes 
date and time, intersection, vehicles, and identifier, enabling 
comprehensive analysis and exploration. Covering a significant 
period, the dataset includes one-hour intervals starting on 
November 1, 2015, and ending on June 30, 2017, as visually 
shown in Fig. 1. The extensive temporal coverage of the dataset 
facilitates a comprehensive understanding of traffic patterns and 
trends over a substantial duration, enabling valuable insights and 
robust analysis for our research. 

 
Fig. 1. Traffic prediction dataset. 

B. Data Processing 

The dataset that was collected contains limited and sparse 
traffic records that span across different time periods. Through 
our analysis, we explored the data by considering different time-
related characteristics. This investigation revealed notable 
variations among the four intersections. While all intersections 
experienced an annual increase in the number of vehicles, it is 
worth noting that data availability for the fourth intersection was 
relatively restricted, as depicted in Fig. 2. 

Furthermore, we observed that the number of vehicles tends 
to rise in June, which can be attributed to the summer season and 
school breaks, representing a period of heightened activity as 
shown in Fig. 3. Analyzing the data over the course of a day, we 
identified a consistent pattern of increased vehicle numbers 
during peak hours and a subsequent decrease during nighttime, 
as demonstrated in Fig. 4. Additionally, we found that traffic 
appears to be more stable on weekdays, with fewer vehicles on 
the road, while it becomes more fluid and less congested on 
Saturdays and Sundays, as illustrated in Fig. 5. 

By examining these temporal patterns and variations in the 
data, we gained valuable insights into the dynamics of traffic 
behavior across different time periods and days of the week. 
These observations provide a comprehensive understanding of 
the factors influencing vehicle volumes and traffic flow, 
allowing us to better comprehend and model the patterns 
exhibited by the collected dataset. 

Upon careful examination and analysis, we have observed 
that the datasets corresponding to the four intersections possess 
distinctive scopes and characteristics. Recognizing the 
significance of accurately capturing and representing the unique 
attributes of each intersection, it becomes imperative to partition 
the dataset accordingly. By dividing the dataset into separate 
segments corresponding to each intersection, we ensure that our 
analysis and modeling efforts are adapted to the specific 
characteristics and patterns exhibited by each intersection. This 
mechanism allows us to focus on intersections individually to 
obtain their specific traffic patterns in a more granular manner. 
By isolating the data for each intersection, we can apply specific 
modeling techniques and algorithms that are best suited to 
capture the intricacies and variations unique to that particular 
intersection. This approach enables us to achieve more accurate 
and insightful results, as we can account for the specific factors 
that influence traffic behavior at each intersection. 
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Fig. 2. The number of vehicles during years . 

 
Fig. 3. The number of vehicles during months. 

 
Fig. 4.   The number of vehicles during hours . 

 
Fig. 5. The number of vehicles during days. 

Through the careful partitioning of the dataset, we can better 
understand the nuances of traffic flow at each intersection and 
develop more targeted models and predictions. This segregation 
not only facilitates a more comprehensive analysis of each 
intersection but also ensures that the models derived from the 
data accurately reflect the characteristics and dynamics of each 
specific location. 

C. Data Standardization 

We implemented data standardization by applying function 
1. This preprocessing step eliminates the potential biases caused 
by variables with differing ranges and variances, allowing the 
models to effectively capture and learn from the data patterns 
without being influenced by the scale of the features. The 
function applied for data standardization aids in normalizing the 
data and enhancing the performance and interpretability of our 
models. 

𝑋𝑛𝑒𝑤𝑋𝑖𝑋s

where: 

𝑋𝑖: data point values 

𝑋:  the mean value 

S: The standard deviation 

D. Data Differencing 

A stationary time series is characterized by unchanging 
properties that remain consistent over time. This means that the 
values of the time series at different time points are not affected 
by trends or seasonality. In contrast, non-stationary time series 
exhibit patterns like seasonality that impact the values and 
characteristics of the series as time progresses. 

A commonly used method to convert a non-stationary time 
series into a stationary one is to calculate the distance between 
the actual observation and the next one, known as differencing. 
The process of differencing is employed to enhance the stability 
of the average value of a time series by eliminating fluctuations 
in its overall level, thereby reducing patterns of trends and 
seasonality. 

The graphical representations provided in Fig. 2, 3, 4, and 5 
clearly demonstrate the existence of seasonality and a noticeable 
upward trend in the time series data. To enhance the 
effectiveness of our models, it is crucial to transform the time 
series data into a stationary form. To achieve this, we employed 
differencing techniques that aim to eliminate the seasonality 
patterns. However, it is important to note that the specific 
differencing technique utilized will vary for each intersection, as 
theses intersections exhibit distinct periodic seasonality 
characteristics. By tailoring the differencing approach to each 
intersection's unique seasonal patterns, we can effectively 
mitigate the influence of seasonality and improve the 
performance of our models. 

The differencing technique employed for each intersection 
can be summarized as follows: 

 Intersection 1: The computation involves taking the 
difference between weekly values. 

 Intersection 2: The calculation entails determining the 
difference between consecutive days. 

 Intersections 3 and 4: The approach involves utilizing the 
difference between hourly values. 

IV. PROPOSED SOLUTION 

The proposed approach merges the capabilities of LSTM and 
PSO to create a resilient model. LSTM excels in modeling 
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sequences with its powerful capabilities, while PSO steps in to 
meticulously refine the hyperparameters and increase the 
efficiency of the LSTM model. This combined approach strives 
to capitalize on the respective strengths of both methodologies, 
ultimately improving predictive performance. The following 
paragraphs describe the subtleties of integrating LSTM and PSO 
within this hybrid approach. 

A. LSTM 

The LSTM Model is a leading research paradigm in the field 
of DL, which has attracted particular attention for its application 
to traffic prediction in ITS. Hochreiter [20] presented the LSTM 
model as an advance on the conventional framework of recurrent 
neural networks (RNN). This innovative architecture deals with 
the limitations of traditional RNNs, presenting improved 
capabilities for capturing and retaining long-term dependencies, 
which proves particularly advantageous for modeling complex 
temporal patterns, such as those encountered in traffic prediction 
scenarios [21]. 

LSTM has the capacity to model the stochastic nature 
inherent in traffic data, enabling spatio-temporal characteristics 
to be identified. In the context of traffic networks, those based 
on LSTM retain both short- and long-term data in their memory, 
relying on this accumulated information to make predictive 
decisions in the present moment. This marks a departure from 
conventional DL methods, where output decisions are generally 
made without the intervention of memory [22]. The use of 
memory in LSTM-based traffic models contributes to a more 
nuanced and context-sensitive decision-making process, 
improving the network's ability to capture and adapt to the 
dynamic patterns inherent in traffic data, Fig. 6 illustrates the 
fundamental structure of the LSTM model. 

The LSTM architecture is characterized by the incorporation 
of three fundamental gates: the forget gate, the input gate and 
the output gate. These gates collectively govern the flow of 
information within the network [23]. In addition, the LSTM 
stores the current and previous states of cells, constituting long-
term memory, as well as the hidden states representing short-
term memory. The complex interaction of these elements 
contributes to the model's ability to effectively capture and 
handle temporal dependencies. In the following sections, we 
explain the individual roles and functionalities of the forget, 
input, and output gates in the LSTM architecture. 

1) The forget gate: At time step t, the LSTM's forget 

gate processesxt  and ht−1   through σ. yielding ft  values 

between 0 and 1. These values, when multiplied with ct−1, 

decide whether to retain r forgot previous states: 0 means 

forgetting, introducing new critical information, while 1 

means preservation [24]. The function performed by the 

forget gate is represented as: 

𝑓𝑡 = 𝜎(𝑊𝑓[ℎ𝑡−1 ,𝑥𝑡] + 𝑏𝑓)                      (2) 

Here, 𝑊𝑓  and  𝑏𝑓  denote the respective weighting and bias 

matrices associated with the forget gate. 

2) The input gate: The Input Gate in an LSTM model 

combines tan ℎ and sigmoid functions to update the cell 

state. Tanh generates a vector C̃𝑡  from input data and 

previous memory, while sigmoid's output 𝑖𝑡  represents 

the importance of current input. Multiplying 𝑖𝑡 with C̃𝑡 and 

adding it to the previous cell state updates the current 

state, determining the significance of input for information 

retention [25]. 

𝑖𝑡 = 𝜎(𝑊𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)                               (3) 

C̃𝑡 = tan ℎ (𝑊𝑐[ℎ𝑡−1 ,𝑥𝑡] + 𝑏𝑐)

Here, 𝑊𝑖  and  𝑊𝑐 represent the weighting matrices for the 
input gate of the sigmoid and hyperbolic tangent ( tan ℎ ) 
functions, respectively. Additionally, 𝑏𝑖  and 𝑏𝑐 denote the 
corresponding bias terms for 𝑊𝑖 and 𝑊𝑐. 

3) The output gate: The Output Gate in LSTM model 

incorporates three vectors:  𝐶𝑡, 𝑥𝑡and ℎ𝑡−1 , producing the 

current hidden state ℎ𝑡  through the following 

mathematical relationships: 

𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1 ,𝑥𝑡] + 𝑏𝑜)                      (5) 

ℎ𝑡 = 𝑜𝑡 tan ℎ (𝐶𝑡)

Here, 𝑜𝑡  represents the output of the sigmoid function, 
obtained by applying the weighting matrix 𝑊𝑜 to  [ℎ𝑡−1, 𝑥𝑡] and 
adding the biasing factor 𝑏𝑜. The multiplication process involves 
multiplying the corresponding elements of the matrices [26]. 

 
Fig. 6. The foundational architecture of LSTM model. 

B. PSO 

Particle Swarm Optimization is a nature-inspired meta-
heuristic optimization technique that emulates the collective 
behavior of birds in flight and fish in schools. The fundamental 
objective of PSO is to iteratively enhance a solution based on a 
given quality measure, commonly referred to as the fitness 
function [27]. 

The PSO algorithm initiates by generating a set of particles 
(solutions) randomly. These particles represent potential 
solutions, and their relative positions are adjusted iteratively to 
search for the optimal solution. In each iteration, every particle 
undergoes an update process by comparing two critical values: 
the particle's personal best solution (pBest) achieved thus far, 
and the global optimal solution (gBest) obtained by the entire 
swarm of particles. Therefore, each particle maintains a memory 
of both its best individual solution and the best global solution, 
empowering it to make informed adjustments to its position 
during the optimization process [28]. 
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By continuously updating their positions based on the 
comparison between personal and global best solutions, the 
particles in PSO strive to collectively navigate the solution 
space. This behavior enables them to exploit promising regions 
and explore new areas, ultimately converging toward the 
optimal solution. The iterative nature of PSO, along with its 
ability to leverage global and personal knowledge, makes it a 
powerful optimization technique for addressing complex 
problems [29]. 

The following relations are used to update all weights: 

𝑣𝑖
𝑡+1 = ω 𝑣𝑖

𝑡 + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡𝑖

𝑡 − 𝑥𝑖
𝑡) − 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡

𝑡 − 𝑥𝑖
𝑡)        

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑣𝑖
𝑡+1                        

where, the variable v denotes the velocity vector, and the 
parameters 𝑐1 and 𝑐2 act as cognitive and social coefficients, 
respectively, to govern the swarm's behavior. The inertia weight 
ω, along with the two random real numbers 𝑟1  and 𝑟2 , both 
between 0 and 1, and the current generation t, also play a crucial 
role in the formulation. 

C. LSTM-PSO 

The synergy between LSTM and PSO exploits the strengths 
of each: LSTM excels at capturing temporal dependencies, 
while PSO efficiently navigates the complex landscape of 
hyperparameters [30]. This combined approach not only 
accelerates the optimization process, but also increases the 
possibility of discovering hyperparameter configurations that 
improve the performance of the LSTM model for tasks such as 
traffic flow prediction. The scientific rationale resides in PSO's 
ability to address the challenges associated with the complex and 
highly dimensional search space inherent in LSTM 
hyperparameter tuning, thus contributing to the effectiveness 
and efficiency of the modeling process [31]. 

 
Fig. 7. The proposed approach. 

The LSTM-PSO computation process involves begins with 
data processing, followed by the division of the dataset into 
training and testing sets. The PSO algorithm is initialized with 
specified parameters, and a population of particles, representing 
potential hyperparameters for the LSTM. The fitness of each 
particle is evaluated by training the LSTM with the 
corresponding hyperparameters. PSO dynamically updates 
particle positions based on personal and global best-known 
positions. The process continues by continuously updating the 
velocity and position of each particle until termination 
conditions are met. The hyperparameters from the particle with 
the best fitness are then used to train the final LSTM model. The 
resulting model is evaluated on a testing dataset, and the 
optimized hyperparameters are saved for future use, presenting 
a comprehensive approach to enhance the LSTM's performance 
in the regression task, as visually shown in Fig. 7. 

V. PERFORMANCE EVALUATION 

When evaluating the performance of our model for traffic 
flow prediction, we employed commonly used evaluation 
metrics, including MAE and RMSE [28, 29]. 

MAE =  
1

𝑛
∑ |𝑦𝑖 − 𝑥𝑖|

𝑛
𝑖=1                               

RMSE =   √
1

𝑛
∑ (𝑦𝑖 − 𝑥𝑖)

2𝑛
𝑖=1                      

Where: 

n:  The simple size in the testing set. 

𝑥𝑖:  observed values. 

𝑦𝑖: predicted values. 

VI. EXPERIMENT AND RESULTS 

1) Parameter setting Of LSTM-PSO: The efficiency of 

model learning depends on the selection of appropriate 

model parameters. Table I illustrates the precise 

initialization parameters used in the LSTM-PSO model 

following experimental calibration. The values of these 

parameters were identified in iterative testing and 

refinement. 

TABLE I.  PARAMETER SETTING LSTM-PSO 

Parameter Value 

Population size 20 

Self-learning factor 1.5 

Group learning factor 2 

neurons 150 

Number of hidden layers 5 

Epoch 100 

Batch Size 150 

2) Computational results: This research aims to 

develop a traffic flow prediction system using a hybrid 

LSTM-PSO model. The work follows a systematic 

approach, starting with a pre-processing phase where the 

dataset is divided into four parts based on the 

intersections. This division allows for independent 
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analysis of each intersection, considering their unique 

characteristics and traffic patterns. The datasets are then 

normalized to ensure consistent scaling and improved 

model performance. Additionally, the differentiation 

technique is applied to enhance data quality by 

highlighting traffic flow changes. 

During the second phase, our hybrid LSTM-PSO model, 
integrating neural networks with optimization techniques, is 
trained alongside four additional models for each segment of the 
dataset. Evaluation of these models is conducted using MAE and 
RMSE metrics, standard for regression tasks, to gauge their 
effectiveness. These metrics provide insights into the models' 
average error magnitudes. The best-performing model is 
selected based on the evaluations, characterized by the lowest 
MAE and RMSE values. 

To evaluate the short-term traffic flow prediction 
performance, each neural network model under consideration 
was trained on 80% of the dataset time intervals and cross-
validated, with testing conducted on the remaining 20% of the 
same datasets. Subsequently, we developed an LSTM neural 
network. Following this, the PSO technique was employed to 
fine-tune the LSTM hyperparameters, resulting in the prediction 
of the target hyperparameters. 

The experimental results comparing conventional LSTM-
PSO, LSTM, Random Forest Regressor, K Neighbors 
Regressor, and Decision Tree Regressor algorithms are 
presented in Table II, Fig. 8 and Fig. 9. For the first intersection, 
our hybrid model LSTM-PSO obtained an RMSE of 0.15258 
and an MAE of 0.0898. Meanwhile, at the second intersection, 
it recorded an RMSE of 0.3574 and an MAE of 0.2441. Moving 
on to the third intersection, the model achieved an RMSE of 
0.4227 and an MAE of 0.1672. Finally, at the fourth intersection, 
it attained an RMSE of 0.6857 and an MAE of 0.4751. 

The empirical evidence in the table confirms that our hybrid 
model, LSTM-PSO, consistently surpasses other models like 
LSTM, RFR, KNR, and DTR in minimizing both MAE and 
RMSE values across all intersections in our dataset. This 
demonstrates LSTM-PSO's adeptness in capturing the 
underlying patterns and dynamics of traffic flow data, resulting 
in more precise predictions. Its superior performance stems from 
leveraging LSTM networks for sequence modeling and PSO for 
fine-tuning model hyperparameters. Consequently, LSTM-PSO 
emerges as a robust and effective solution for short-term traffic 
flow prediction tasks, benefiting from PSO's effectiveness in 
exploring the search space and LSTM's ability to quickly adapt 
to local optima. This synergy enables exploration of diverse 
parameter regions, potentially yielding superior global solutions 
while the stochastic behavior of PSO aids in avoiding local 
optima, ultimately enhancing the overall performance of the 
model. 

The principal motivation for our research is the need to 
reduce traffic congestion at intersections. By accurately 
predicting traffic flow at intersections, our hybrid model can 
inform real-time traffic management strategies, optimize signal 
timing and, ultimately, reduce overall journey times for 
travelers. This application responds directly to the daily 
challenges faced by city drivers and transport authorities, 

offering real solutions to improve the efficiency and 
sustainability of urban mobility systems. 

To validate and make our algorithm robust, we continue the 
validation and updating step continuously using new data to 
improve the accuracy and make necessary adjustments and 
change traffic patterns based on this new data. We are currently 
deploying the model in a real-time environment and comparing 
its predictions with actual traffic data using computer vision as 
a technique to collect real-time traffic data at intersections. 

TABLE II.  THE RMSE AND MAE VALUES OF THE MODELS WERE 

EVALUATED INDIVIDUALLY FOR EACH OF THE FOUR INTERSECTIONS 

  
LSTM 

PSO 
LSTM RFR KNR DTR 

M
A

E
 

Intersection1 0.0898 0.1436 0.1766 0.1944 0.2631 

Intersection2 0.2441 0.3245 0.3915 0.4577 0.5378 

Intersection3 0.1672 0.2217 0.2918 0.32142 0.4405 

Intersection4 0.4751 0.6301 0.7508 0.8128 0.9315 

R
M

S
E

 

Intersection1 0.1525 0.21 0.2459 0.274 0.3762 

Intersection2 0.3574 0.4566 0.5037 0.5869 0.7086 

Intersection3 0.4227 0.6012 0.6176 0.6394 0.9027 

Intersection4 0.6857 0.8215 1.0722 1.117 1.3212 

 
Fig. 8. MAE results according to the four intersections . 

 
Fig. 9. RMSE results according to the four intersections. 

VII. CONCLUSION 

The ability to anticipate traffic flow at intersections has 
emerged as a crucial element in diminishing travel duration on 
roadways and addressing the escalating predicament of traffic 
congestion, a challenge of mounting importance in both 
developed and developing nations. 
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The primary objective of this research was to evaluate and 
compare the effectiveness of our hybrid model, which combines 
the LSTM algorithm with PSO, against various alternative 
models for predicting traffic flow at intersections. To address the 
temporal fluctuations in traffic data at specific intersections, we 
initially divided the dataset into four discrete segments, each 
corresponding to a distinct intersection. This segmentation 
allowed for independent analysis of each intersection. 
Subsequently, we normalized the data to ensure uniformity and 
consistency across the entire dataset. In the final preprocessing 
phase, we applied data differentiation techniques to remove 
seasonal patterns and transform the data into a stationary state. 
These latter two stages were crucial for enhancing the quality of 
the data and optimizing the performance of the systems used for 
predicting traffic flow at intersections. 

What sets our approach apart is its ability to harness the 
strengths of both LSTM and PSO. LSTM excels in capturing 
temporal dependencies in traffic data, while PSO optimizes the 
hyperparameters of the LSTM model to further enhance its 
predictive performance. This synergy between LSTM and PSO 
has proven to be highly effective, resulting in superior predictive 
capabilities compared to other models. These results underscore 
the promising potential of employing neural networks trained 
with particle swarm optimization for traffic flow prediction in 
general. By leveraging the power of advanced ML techniques, 
such as LSTM and PSO, we can unlock new possibilities for 
improving traffic management and enhancing overall 
transportation efficiency. 
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